Reg No.:__ Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC,AE)

Max. Marks: 100 **Duration: 3 Hours**

PART A Marks Answer any two full questions, each carries 15 marks. 1 a) Derive the expression for conductivity and mobility of carriers in a (7)semiconductor subjected to an electric field. b) Explain the temperature dependence of carrier concentration in extrinsic (3) semiconductors. c) Calculate the hole and intrinsic carrier concentrations. Sketch band (5) diagram. $Nc=10^{19}/cm^3$, $Nv=5x10^{18}/cm^3$, Eg=2eV, T=900K, $n_0=10^{17}/cm^3$. 2 a) Derive Einstein's relation. (6) b) Explain why indirect recombination is a slow process. (4) c) A Si sample is doped with 10^{16} /cm³ In atoms and a certain number of shallow (5) donors. The In acceptor level is 0.16eV above E_V and E_f is 0.26eV above E_V at 300K. How many In atoms are un-ionised? 3 a) Derive the expression for electron, hole and intrinsic concentrations at (8) equilibrium in terms of effective density of states. Formulate the relation between these concentrations at equilibrium. An n-type Si sample with $Nd = 10^{15}$ cm⁻³ is steadily illuminated such that gop = (7) 10^{21} EHP/cm³s. If $T_p = T_p = 1 \mu s$ for this excitation, calculate the separation in the quasi-Fermi levels, (Fn - Fp). PART B Answer any two full questions, each carries 15 marks. 4 a) Derive ideal diode equation. State any two assumptions used. (10)b) Draw the potential, charge density and electric field distribution within the (5)transition region of an abrupt pn junction with Nd<Na. Label the diagram. 5 Illustrate how a metal – n type contact behave as rectifying contact and ohmic (10)contact with supporting energy band diagram. b) If a metal with a work function of 4.6 e V is deposited on Si (electron affinity of (5) 4 eV) and acceptor doping level of 10^{18} cm⁻³. Draw the equilibrium band diagram

Schottky or ohmic contact, and why?

and mark off the Fermi level, the band edges, and the vacuum level. Is this a

b) An abrupt Si p-n junction has $N_a = 10^{18} cm^{-3}$ on one side and $N_d = 5 \times 10^{15} cm^{-3}$ on the other. If the junction has a circular cross section with a diameter of $10 \mu m$, Calculate Vo, x_{no} , Q_+ , and Eo for this junction at equilibrium (300 K).

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Derive the expression for minority carrier distribution and terminal currents in a (12) BJT. State the assumptions used.
 - b) Explain the basic performance parameters α , β & γ . (3)
 - c) Assume that a p-n-p transistor is doped such that the emitter doping is 10 times that in the base, the minority carrier mobility in the emitter is one-half that in the base, and the base width is one-tenth the minority carrier diffusion length. The carrier lifetimes are equal. Calculate α and β for this transistor.
- 8 a) Derive the expression for drain current at linear region and saturation for a (10) MOSFET.
 - b) An Al-gate p-channel MOS transistor is made on an n-type Si substrate with $N_d = 5 \times 10^{17}$ cm⁻³. The SiO₂ thickness is 100 Å in the gate region, and the effective interface charge Q_i is 5 x 10^{10} q C/cm². Find W_m , V_{FB} , and V_T , if the gate to substrate work function difference $\Phi_{ms} = -0.15V$
 - c) Draw and explain the transfer characteristics of an n-channel MOSFET. (5)
- 9 a) Explain the principle of operation of MOS capacitor with suitable energy band diagram. (10)
 - b) Explain base width modulation. Explain its effect on terminal currents. (5)
 - c) Draw and label the minority carrier distribution curve of a BJT in active mode. (5)
